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A real crystal octahedron is de®ned as any polyhedron bounded, at least, by

some of four pairs of parallel planes being in a standard crystallographic

orientation with arbitrary distances between them. All the combinatorially

non-equivalent shapes (30 in total) are found and characterized by 2-subordina-

tion symbols, automorphism group orders and symmetry point groups. The

results are discussed with respect to the diamond crystal morphology.

1. Introduction

All facets of a crystal form are equally developed in an ideal crystal.

But real morphology is known to be highly dependent on the

conditions under which a crystal grows. An interesting thing we often

see is decrease in area or even lack of some facets of a crystal form.

To generalize, we de®ne a real crystal form as any polyhedron

bounded, at least, by some of the planes of a given ideal crystal form

in a standard orientation with arbitrary distances from the origin of

coordinates. In principle, all the real crystal forms related to a given

ideal crystal form can be enumerated in a combinatorial approxi-

mation, i.e. with respect to the number and combination of different

(3-, 4-, 5-, . . . , n-gonal) facets. For example, a real crystal cube is

nothing but the variety of rectangular parallelepipeds combina-

torially equivalent to each other. As for the real crystal octahedron, it

is not so trivial. This variety is generated and characterized in the

paper.

2. Generation and characterization of polyhedra

In accordance with what was said above, we de®ne a real crystal

octahedron as any polyhedron bounded, at least, by some of four

pairs of parallel planes in a standard crystallographic orientation with

arbitrary distances between them. A generating algorithm consists of

®ve steps:

1. We take a plane from each of four pairs to get the tetrahedron as

the simplest 3D polyhedron.

2. The remaining four planes are in an equal orientation to the

tetrahedron. Hence, we take any of them to cut it.

3. The remaining three planes are in an equal orientation to the

intersected tetrahedron. So we take any of them to intersect the

latter, thus obtaining three combinatorially different 6-hedra.

4. Because of the same reason, we take any of the two remaining

planes to cut each of the 6-hedra, thus obtaining eight combina-

torially different 7-hedra.

5. Finally, we cut each of the 7-hedra to get 17 combinatorially

different 8-hedra.

Afterwards, we characterize the shapes by 2-subordination

symbols and symmetry point groups. The 2-subordination symbols

show the numbers of 3- to 6-gonal facets in a sequence. The symmetry

point groups relate to the most symmetrical polyhedra of the same

combinatorial types. This is justi®ed by the known theorem: every

combinatorial automorphism of a 3D polyhedron is af®nely realiz-

able. That is, there exists for a polyhedron of a given combinatorial

type a metrical realization such that its symmetry point group is

isomorphic to the automorphism group of its edge graph. The only

restriction that should be emphasized once again is that the facets of

the real crystal octahedra must be in a standard orientation to each

other.

3. Results and discussion

The real crystal octahedra variety is found to consist of 30 combi-

natorially different shapes with one of them (46) having two af®nely
Figure 1
The real crystal octahedra. See text for the symbols.



non-equivalent variants. They are shown in Fig. 1. The statistics of

simple (i.e. only 3 edges meet at each vertex) and non-simple shapes

with different numbers of facets are given in Table 1 while their

statistics of automorphism group orders and symmetry point groups

are in Table 2. Let us consider two examples to explain the procedure

of symmetry point-group determination.

1. Being considered as graphs, polyhedra 46-a and 46-b are

combinatorially equivalent to the cube with automorphism group of

order 48. But, taking into account the mutual orientations of facets,

the maximum symmetry point groups that may be observed for

polyhedra of such combinatorial types are mm2 and �3m, respectively.

2. Polyhedron 4662 is combinatorially equivalent to a hexagonal

prism with 6=mmm symmetry point group of order 24. But, taking

into account the same reason, it has �3m symmetry point group of

order 12.

In general, the most interesting thing is that, with the exception of

the 46 shape, each real crystal octahedron is uniquely de®ned by its

2-subordination symbol. As can also be seen, the real crystal octa-

hedra belong to nine symmetry point groups, mostly to m, mm2 and

3m. How does this fact relate to natural crystals? In crystal

morphology, the symmetry of a crystal form is de®ned by the

symmetry of the facet vectors and not by the symmetry of the crystal

shape. But the latter can be interpreted in accordance with the Curie

principle: only those symmetry elements remain in the morphology of

a crystal that do not contradict the symmetry of the environment. The

above results can thus be applied to crystals for which the octahedron

is a common crystal form.

For example, according to Goldschmidt (1897, pp. 114±115), there

are 15 crystal forms of diamond. According to Fersman (1955, pp.

48±49), there exist 29 such forms. But only eight of them are common

and only three of the latter are initial. They are the cube, the octa-

hedron and the rhombododecahedron. That is why Harris et al.

(1975) distinguish between seven morphological types of plane-faced

diamonds: cube, octahedron, rhombododecahedron, cube + octahe-

dron, cube + rhombododecahedron, octahedron + rhombododeca-

hedron and cube + octahedron + rhombododecahedron. Our general

idea is to signi®cantly extend this taxonomy by combinatorially

different combinations of the real crystal cubes, octahedra and

rhombododecahedra.

Besides, we have found 12 real crystal octahedra among a great

number of diamonds published in Fersman & Goldschmidt (1911),

Goldschmidt (1916), Fersman (1955), Kukharenko (1955), Shafra-

novsky (1964), Orlov (1973) and Afanasiev et al. (2000). These are

shapes (Goldschmidt, 1916): 34 (Fig. 1), 3243 (Figs. 2, 91), 38 (Figs. 4,

15, 106), 3444 (Fig. 5), 31435361 (Fig. 18), 3464 (Fig. 19), 46-a (Fig. 93),

344361 (Fig. 135), 3553 (Fig. 229); and (Orlov, 1973, Fig. 24): 4662 (No.

2), 31455161 (No. 5), 324452 (No. 6).

As follows from Table 2, they belong to all symmetry point groups

with the exception of the trivial one. Therefore, in accordance with

the Curie principle, we can assert a wide range of local growth

conditions for natural diamonds. They can be interpreted in detail as

discussed, for example, in Kirchmayer (1965, 1971).

4. Conclusions

All the combinatorially different real crystal octahedra (30 in total)

are generated and characterized by 2-subordination symbols and

symmetry point groups in the paper. With the exception of the 46

shape of two af®nely non-equivalent types, the shapes can be

uniquely de®ned by 2-subordination symbols. This fact makes their

taxonomy easy. In total, the real crystal octahedra belong to nine

symmetry point groups. At least 12 shapes belonging to eight

symmetry point groups have previously been published. In accor-

dance with the Curie principle, this fact bears testimony to a wide

range of local growth conditions for natural diamonds. As the next

step, it makes sense to ®nd the real crystal rhombododecahedra and

their combinations with the real crystal cube and octahedra.

I acknowledge a great bene®t from the highly skilled comments

made by the referee.
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Table 1
Simple and non-simple real crystal octahedra with different numbers (n) of facets.

n Simple Non-simple

4 34 ±
5 3243 ±
6 324252, 46 3244

7 335361, 314353, 4552 3443, 334351, 334153, 3245, 314551

8 3464, 32425262,31435361, 4662,
3256

34415261, 344361, 3444, 3553, 38, 345262,
334253,324561, 324452, 32435261, 324254,
31455161

Table 2
Automorphism group orders (a.g.o.), symmetry point groups (s.p.g.) and
2-subordination symbols of real crystal octahedra.

a.g.o. s.p.g. 2-subordination symbols

1 1 314551, 32435261

2 m 334351, 334153, 3245, 314353, 4552, 34415261, 334253, 324561, 324254, 31455161,
31435361

4 mm2 3244, 324252, 46-a, 345262, 32425262

2=m 324452

6 3m 3243, 3443, 335361, 3553, 344361

8 mmm 3444

12 �3m 46-b, 4662, 3256

24 �43m 34, 3464

48 m�3m 38


